Interactive visual query of density maps on latent space via flow‐based models

Author:

Li Ning1ORCID,Liang Tianyi1,Jiang Shiqi1,Wang Changbo1,Li Chenhui1

Affiliation:

1. School of Computer Science and Technology East China Normal University Shanghai China

Abstract

AbstractVisual querying of spatiotemporal data has become a dominant mode in the field of visual analytics. Previous studies have utilized well‐designed data structures to speed up the querying of spatiotemporal data. However, reducing storage overhead while improving the querying efficiency of data distribution remains a significant challenge. We propose a flow‐based neural representation method for efficient visual querying. First, we transform spatiotemporal data into density maps through kernel density estimation. Then, we leverage the data‐driven modeling capabilities of a flow‐based neural network to achieve a highly latent representation of the data. Various computations and queries can be performed on the latent representation to improve querying efficiency. Our experiments demonstrate that our approach achieves competitive results in visually querying spatiotemporal data in terms of storage overhead and real‐time interaction efficiency.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3