Ranking and filtering of neuropathology features in the machine learning evaluation of dementia studies

Author:

Rajab Mohammed D.12,Taketa Teruka1,Wharton Stephen B.1,Wang Dennis12345ORCID,

Affiliation:

1. Sheffield Institute for Translational Neuroscience University of Sheffield Sheffield UK

2. Department of Computer Science University of Sheffield Sheffield UK

3. Singapore Institute Clinical Sciences Agency for Science Technology and Research (A*STAR) Singapore Singapore

4. Bioinformatics Institute Agency for Science Technology and Research (A*STAR) Singapore Singapore

5. National Heart and Lung Institute Imperial College London London UK

Abstract

AbstractEarly diagnosis of dementia diseases, such as Alzheimer's disease, is difficult because of the time and resources needed to perform neuropsychological and pathological assessments. Given the increasing use of machine learning methods to evaluate neuropathology features in the brains of dementia patients, it is important to investigate how the selection of features may be impacted and which features are most important for the classification of dementia. We objectively assessed neuropathology features using machine learning techniques for filtering features in two independent ageing cohorts, the Cognitive Function and Aging Studies (CFAS) and Alzheimer's Disease Neuroimaging Initiative (ADNI). The reliefF and least loss methods were most consistent with their rankings between ADNI and CFAS; however, reliefF was most biassed by feature–feature correlations. Braak stage was consistently the highest ranked feature and its ranking was not correlated with other features, highlighting its unique importance. Using a smaller set of highly ranked features, rather than all features, can achieve a similar or better dementia classification performance in CFAS (60%–70% accuracy with Naïve Bayes). This study showed that specific neuropathology features can be prioritised by feature filtering methods, but they are impacted by feature–feature correlations and their results can vary between cohort studies. By understanding these biases, we can reduce discrepancies in feature ranking and identify a minimal set of features needed for accurate classification of dementia.

Funder

Academy of Medical Sciences

Engineering and Physical Sciences Research Council

Medical Research Council

National Institutes of Health

U.S. Department of Defense

Alzheimer's Society

NIHR Sheffield Biomedical Research Centre

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3