Using computer vision of facial expressions to assess symptom domains and treatment response in antipsychotic‐naïve patients with first‐episode psychosis

Author:

Ambrosen Karen S.1ORCID,Lemvigh Cecilie K.1,Nielsen Mette Ø.12ORCID,Glenthøj Birte Y.12,Syeda Warda T.34,Ebdrup Bjørn H.12

Affiliation:

1. Center for Neuropsychiatric Schizophrenia Research (CNSR) & Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research (CINS), Mental Health Center, Glostrup Copenhagen University Hospital, Mental Health Services CPH Copenhagen Denmark

2. Department of Clinical Medicine, Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark

3. Melbourne Neuropsychiatry Center, Department of Psychiatry The University of Melbourne Melbourne Victoria Australia

4. Melbourne Brain Centre Imaging Unit, Department of Radiology The University of Melbourne Melbourne Victoria Australia

Abstract

AbstractBackgroundFacial expressions are a core aspect of non‐verbal communication. Reduced emotional expressiveness of the face is a common negative symptom of schizophrenia, however, quantifying negative symptoms can be clinically challenging and involves a considerable element of rater subjectivity. We used computer vision to investigate if (i) automated assessment of facial expressions captures negative as well as positive and general symptom domains, and (ii) if automated assessments are associated with treatment response in initially antipsychotic‐naïve patients with first‐episode psychosis.MethodWe included 46 patients (mean age 25.4 (6.1); 65.2% males). Psychopathology was assessed at baseline and after 6 weeks of monotherapy with amisulpride using the Positive and Negative Syndrome Scale (PANSS). Baseline interview videos were recorded. Seventeen facial action units (AUs), that is, activation of muscles, from the Facial Action Coding System were extracted using OpenFace 2.0. A correlation matrix was calculated for each patient. Facial expressions were identified using spectral clustering at group‐level. Associations between facial expressions and psychopathology were investigated using multiple linear regression.ResultsThree clusters of facial expressions were identified related to different locations of the face. Cluster 1 was associated with positive and general symptoms at baseline, Cluster 2 was associated with all symptom domains, showing the strongest association with the negative domain, and Cluster 3 was only associated with general symptoms. Cluster 1 was significantly associated with the clinically rated improvement in positive and general symptoms after treatment, and Cluster 2 was significantly associated with clinical improvement in all domains.ConclusionUsing automated computer vision of facial expressions during PANSS interviews did not only capture negative symptoms but also combinations of the three overall domains of psychopathology. Moreover, automated assessments of facial expressions at baseline were associated with initial antipsychotic treatment response. The findings underscore the clinical relevance of facial expressions and motivate further investigations of computer vision in clinical psychiatry.

Funder

Lundbeck Foundation

Region Hovedstadens Psykiatri

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3