Nocturnal avian migration drives high daily turnover but limited change in abundance on the ground

Author:

Nussbaumer Raphaël12ORCID,Van Doren Benjamin M.13ORCID,Hochachka Wesley M.1ORCID,Farnsworth Andrew1ORCID,La Sorte Frank A.14ORCID,Johnston Alison15ORCID,Dokter Adriaan M.16ORCID

Affiliation:

1. Cornell Lab of Ornithology Ithaca NY USA

2. Swiss Ornithological Institute Sempach Lucerne Switzerland

3. Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana‐Champaign Urbana IL USA

4. Department of Ecology and Evolutionary Biology, Yale University New Haven CT USA

5. Centre for Research into Ecological and Environmental Modelling, School of Mathematics and Statistics, University of St Andrews St Andrews UK

6. Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam Amsterdam Noord‐Holland Netherlands

Abstract

Every night during spring and autumn, the mass movement of migratory birds redistributes bird abundances found on the ground during the day. However, the connection between the magnitude of nocturnal migration and the resulting change in diurnal abundance remains poorly quantified. If departures and landings at the same location are balanced throughout the night, we expect high bird turnover but little change in diurnal abundance (stream‐like migration). Alternatively, migrants may move simultaneously in spatial pulses, with well‐separated areas of departure and landing that cause significant changes in the abundance of birds on the ground during the day (wave‐like migration). Here, we apply a flow model to data from weather surveillance radars (WSR) to quantify the daily fluxes of nocturnally migrating birds landing and departing from the ground, characterizing the movement and stopover of birds in a comprehensive synoptic scale framework. We corroborate our results with independent observations of the diurnal abundances of birds on the ground from eBird. Furthermore, we estimate the abundance turnover, defined as the proportion of birds replaced overnight. We find that seasonal bird migration chiefly resembles a stream where bird populations on the ground are continuously replaced by new individuals. Large areas show similar magnitudes of take‐off and landing, coupled with relatively small distances flown by birds each night, resulting in little change in bird densities on the ground. We further show that WSR‐inferred landing and take‐off fluxes predict changes in eBird‐derived abundance turnover rate and turnover in species composition. We find that the daily turnover rate of birds is 13% on average but can reach up to 50% on peak migration nights. Our results highlight that WSR networks can provide real‐time information on rapidly changing bird distributions on the ground. The flow model applied to WSR data can be a valuable tool for real‐time conservation and public engagement focused on migratory birds' daytime stopovers.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3