Reaching for the off switch in nucleolar dominance

Author:

Pikaard Craig S.123ORCID,Chandrasekhara Chinmayi12,McKinlay Anastasia123,Enganti Ramya123,Fultz Dalen123

Affiliation:

1. Department of Biology Indiana University Bloomington Indiana USA

2. Department of Molecular and Cellular Biochemistry Indiana University Bloomington Indiana USA

3. Howard Hughes Medical Institute Indiana University Bloomington Indiana USA

Abstract

SUMMARYNucleolus organizer regions (NORs) are eukaryotic chromosomal loci where ribosomal RNA (rRNA) genes are clustered, typically in hundreds to thousands of copies. Transcription of these rRNA genes by RNA polymerase I and processing of their transcripts results in the formation of the nucleolus, the sub‐nuclear domain in which ribosomes are assembled. Approximately 90 years ago, cytogenetic observations revealed that NORs inherited from the different parents of an interspecific hybrid sometimes differ in morphology at metaphase. Fifty years ago, those chromosomal differences were found to correlate with differences in rRNA gene transcription and the phenomenon became known as nucleolar dominance. Studies of the past 30 years have revealed that nucleolar dominance results from selective rRNA gene silencing, involving repressive chromatin modifications, and occurs in pure species as well as hybrids. Recent evidence also indicates that silencing depends on the NOR in which an rRNA gene is located, and not on the gene's sequence. In this perspective, we discuss how our thinking about nucleolar dominance has shifted over time from the kilobase scale of individual genes to the megabase scale of NORs and chromosomes and questions that remain unanswered in the search for a genetic and biochemical understanding of the off switch.

Funder

Howard Hughes Medical Institute

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3