Transdermal characteristic study of bovine sialoglycoproteins with anti‐skin aging and accelerating skin wound healing

Author:

Cheng Hongwei1,Li Xiangbo1,Du Jiabao1,Dang Liuyi1,Wang Shiyi1,Ding Li1,Zhang Fan1,Sun Shisheng1ORCID,Li Zheng1ORCID

Affiliation:

1. Laboratory for Functional Glycomics College of Life Sciences, Northwest University Xi'an China

Abstract

AbstractBackgroundSialoglycoproteins play important roles in various biological processes, including cell adhesion, immune response, and cell signaling. Our previous studies indicated that the bovine sialoglycoproteins could be developed as a reagent against skin aging and as a new candidate for accelerating skin wound healing as well as inhibiting scar formation. However, transdermal characteristic of the bovine sialoglycoproteins is still unknown.AimsThis study investigated the transdermal permeation of the bovine sialoglycoproteins through porcine skin using the Franz diffusion cell method.ResultsOur study showed that the bovine sialoglycoproteins could penetrate through the porcine skin with a linear permeation pattern described by the regression equation N% = 11.49 t‐3.858, with a high coefficient of determination (R2 = 0.9903). The histochemical results demonstrated the widespread distribution of the bovine sialoglycoproteins between the epidermal and dermal layers, which suggesting parts of the bovine sialoglycoproteins had ability to traverse the epidermal barrier. The results of the lectin microarrays indicated highly enriched glycopatterns on the bovine sialoglycoproteins, which also appeared in permeated porcine skin. The LC‐MS/MS analysis further showed that the bovine sialoglycoproteins were composed of approximately 100 proteins with molecular weight ranging from 748.4 kDa to 10 kDa, and there were 23 specific bovine sialoglycoproteins with molecular weight ranging from 69.2 kDa to 10 kDa to be characterized in permeated porcine skin.ConclusionsParts of the bovine sialoglycoproteins with molecular weight less than 69.2 kDa had ability to traverse the epidermal barrier. Understanding the permeation characteristics of the bovine sialoglycoproteins for developing innovative formulations with therapeutic benefits, contributing to advancements in cosmetic and dermatological fields.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3