Affiliation:
1. Department of Dental Biomaterials, Faculty of Dentistry University of Alexandria Alexandria Egypt
2. Department of Prosthodontics, Faculty of Dentistry University of Alexandria Alexandria Egypt
3. Division of Dental Biomaterials, Department of Prosthodontics, Faculty of Dentistry Alamein International University Alamein Egypt
Abstract
AbstractPurposeTo assess the effect of nanoglass (NG) particles and multiwalled carbon nanotubes’ (MWCNTs) addition on Vickers hardness (VH), degree of conversion (DC), and abrasion resistance of 3D‐printed denture base resin.Materials and Methods3D‐printed denture base resin was reinforced using silanized NG and MWCNTs to obtain four groups: Control, 0.25 wt% NG reinforced resin, 0.25 wt% MWCNTs reinforced resin, and a combination group of 0.25 wt% of both fillers. All specimens (N = 176) were tested before and after thermal aging (600 cycles) for VH (n = 22), DC, and abrasion resistance (n = 22). Abrasion resistance specimens were subjected to 60,000 brushing strokes, and then assessed for surface roughness (Ra) and weight loss. Specimens were then scanned with a benchtop scanner before and after abrasion to produce a color map of topographical changes from superimposed images. Data were analyzed using ANOVA tests followed by Tukey post hoc test. Kruskal‐Wallis test was used to compare percent change among groups, followed by Dunn post hoc test (α = 0.05).ResultsThe interaction between nanofiller content and thermal cycling displayed a significant effect on VH and DC. The 0.25% NG expressed the highest VH before aging but revealed the highest percent decrease after aging. Nanofiller content, thermal aging, and brushing displayed a significant interaction impact on the Ra values.ConclusionsThe addition of nanofillers resulted in an overall improvement in resin microhardness and abrasion resistance. The 0.25% MWCNTs group revealed the lowest Ra with the least percent change in VH and DC, while the combination one displayed the least change in weight.