An Early Paleozoic Ultramafic Complex in the North Wulan Metamorphic Complex, North Qaidam: Contraints on the Nature of the Alaskan‐type Continental Arc Root

Author:

SHAN Jinming1,NIU Manlan1,LI Xiucai1,LI Chen1,WANG Lei1,ZHANG Shuai1

Affiliation:

1. School of Resources and Environmental Engineering Hefei University of Technology Hefei 230009 China

Abstract

AbstractOrogenic peridotite is an important component of orogenic belts and retains crucial information on mantle magmatic activity, slab subduction, and melt or fluid metasomatism. To determine the source of the mantle‐derived parental magma of the peridotite and to investigate the metasomatism that it experienced, we undertook an integrated study of the petrography, whole‐rock major‐ and trace‐element compositions, in situ zircon U‐Pb geochronology, and mineral major‐and trace‐element compositions of an early Paleozoic ultramafic complex in the North Wulan area of North Qaidam. The Halihatu ultramafic–mafic complex is composed of dunite, pyroxene peridotite, and gabbro, which are characteristic of Alaskan‐type complexes. The dunite yields a weighted mean 206Pb/238U age of 479 ± 5 Ma (MSWD = 0.7), which reflects the age of the metasomatism rather than the crystallization age of the ultramafic magma. The peridotites have high Mg# (89.8–91.8) and Cr contents (2419–5190 ppm), low Al2O3 (0.20–1.68 wt%) and Ni (289–1012 ppm) contents, and high olivine Fo contents (87–91), suggesting a large degree (∼15%–22%) of partial melting of lithospheric ultramafic rocks followed by variable degrees of fractional crystallization of olivine and pyroxene. This is consistent with estimates of 15%–22.3% partial melting calculated using the Cr# of spinel crystals and with the low Yb (0.04–0.33 ppm) and Y (0.72–1.29 ppm) contents of clinopyroxene crystals. Whole‐rock trace‐element patterns show enrichment in large ion lithophile elements and depletion in high field strength elements, along with high Al2O3 (2.10–6.47 wt%) and low TiO2 (0.01–0.21 wt%) contents of clinopyroxene crystals, suggesting an arc magma cumulate trend. These features, along with the high olivine Fo contents (87–91 ppm), imply that the Halihatu peridotite is an Alaskan‐type crustal cumulates derived from Mg‐rich hydrous basaltic melts. The high estimated fO2 (FMQ +1.97 to FMQ +3.81) further supports the idea that they formed in an arc setting. The Ni/Co and Ni/Mn ratios and cumulate textures of the olivine, quenched boundaries between mafic and felsic melts, and the occurrence of tremolite and phlogopite reflect interactions between the Halihatu peridotite and injected silicate and carbonatitic melts in the lower crust. Therefore, we propose a new cumulate‐infiltration model for the petrogenesis of Alaskan‐type ultramafic complexes, which improves our understanding of the nature of Alaskan‐type continental arc root.

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3