A random walk for agricultural total factor productivity

Author:

Vercammen James1ORCID

Affiliation:

1. Department of Food and Resource Economics University of British Columbia Vancouver British Columbia Canada

Abstract

AbstractGrowth in agricultural total factor productivity (TFP), which explains most of the long‐term growth in U.S. agricultural output, may be slowing. The Economic Research Service (ERS) of the USDA is confident that current levels of below‐average growth will eventually regain the long‐term trend line. Others disagree, arguing instead that due to declining public expenditures on agricultural research, TFP growth experienced a downward and seemingly permanent structural shift about 30 years ago. In this paper, I argue that neither perspective is accurate since agricultural TFP is best modeled as a random walk with drift and thus not governed by a deterministic trend line. When I use a first difference model to accommodate the unit root, I do not find a structural break in the rate of drift. However, I acknowledge that this finding may not be general because I show that my test for a structural break has low power. To add theoretical relevance, I develop a simple model of stochastic innovation and farm technology adoption, and then use simulation results from my model to explain why a random walk for agricultural TFP is a theoretically sound proposition.

Publisher

Wiley

Subject

Economics and Econometrics,Agronomy and Crop Science,Animal Science and Zoology,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3