Gamma frequency entrainment rescues cognitive impairment by decreasing postsynaptic transmission after traumatic brain injury

Author:

Wang Weijie1ORCID,Zhang Xiaotian1,He Ruixing1,Li Shaoxun1,Fang Dazhao1,Pang Cong1

Affiliation:

1. Department of Neurosurgery, Huai'an First People's Hospital Nanjing Medical University Huai'an China

Abstract

AbstractIntroductionThe relationship between oscillatory activity in hippocampus and cognitive impairment in traumatic brain injury (TBI) remains unclear. Although TBI decreases gamma oscillations and 40 Hz light flicker improves TBI prognosis, the effects and mechanism of rhythmic flicker on TBI remain unclear.AimsIn this study, we aimed to explore whether light flicker could reverse cognitive deficits, and further explore its potential mechanisms in TBI mouse model.MethodsThe Morris water maze test (MWM), step‐down test (SDT), and novel object recognition test (NOR) were applied to evaluate the cognitive ability. The local field potential (LFP) recording was applied to measure low gamma reduction of CA1 in hippocampus after TBI. And electrophysiological experiments were applied to explore effects of the gamma frequency entrainment on long‐term potentiation (LTP), postsynaptic transmission, and intrinsic excitability of CA1 pyramidal cells (PCs) in TBI mice. Immunofluorescence staining and western blotting were applied to explore the effects of 40 Hz light flicker on the expression of PSD95 in hippocampus of TBI mice.ResultsWe found that 40 Hz light flicker restored low gamma reduction of CA1 in hippocampus after TBI. And 40 Hz, but not random or 80 Hz light flicker, reversed cognitive impairment after TBI in behavioral tests. Moreover, 40 Hz light flicker improved N‐methyl‐D‐aspartate (NMDA) receptor‐dependent LTP (LTPNMDAR) and L‐type voltage‐gated calcium channel‐dependent LTP (LTPL‐VGCC) after TBI treatment. And gamma frequency entrainment decreased excitatory postsynaptic currents (EPSCs) of CA1 PCs in TBI mice. Our results have illustrated that 40 Hz light flicker could decrease intrinsic excitability of PCs after TBI treatment in mice. Furthermore, 40 Hz light flicker decreased the expression of PSD95 in hippocampus of TBI mice.ConclusionThese results demonstrated that 40 Hz light flicker rescues cognitive impairment by decreasing postsynaptic transmission in PCs after TBI treatment in mice.

Publisher

Wiley

Subject

Pharmacology (medical),Physiology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3