H2S works synergistically with rhizobia to modify photosynthetic carbon assimilation and metabolism in nitrogen‐deficient soybeans

Author:

Zhang Ni‐Na1,Suo Bing‐Yu2,Yao Lin‐Lin3,Ding Yu‐Xin3,Zhang Jian‐Hua4,Wei Ge‐Hong2,Shangguan Zhou‐Ping1,Chen Juan2ORCID

Affiliation:

1. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau Northwest A&F University Yangling Shaanxi China

2. State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Science Northwest A&F University Yangling Shaanxi China

3. College of Natural Resources and Environment Northwest A&F University Yangling Shaanxi China

4. Department of Biology Hong Kong Baptist University Hong Kong China

Abstract

AbstractHydrogen sulfide (H2S) performs a crucial role in plant development and abiotic stress responses by interacting with other signalling molecules. However, the synergistic involvement of H2S and rhizobia in photosynthetic carbon (C) metabolism in soybean (Glycine max) under nitrogen (N) deficiency has been largely overlooked. Therefore, we scrutinised how H2S drives photosynthetic C fixation, utilisation, and accumulation in soybean‐rhizobia symbiotic systems. When soybeans encountered N deficiency, organ growth, grain output, and nodule N‐fixation performance were considerably improved owing to H2S and rhizobia. Furthermore, H2S collaborated with rhizobia to actively govern assimilation product generation and transport, modulating C allocation, utilisation, and accumulation. Additionally, H2S and rhizobia profoundly affected critical enzyme activities and coding gene expressions implicated in C fixation, transport, and metabolism. Furthermore, we observed substantial effects of H2S and rhizobia on primary metabolism and C–N coupled metabolic networks in essential organs via C metabolic regulation. Consequently, H2S synergy with rhizobia inspired complex primary metabolism and C–N coupled metabolic pathways by directing the expression of key enzymes and related coding genes involved in C metabolism, stimulating effective C fixation, transport, and distribution, and ultimately improving N fixation, growth, and grain yield in soybeans.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3