Weather explains inter‐annual variability, but not the temporal decline, in insect biomass

Author:

Duchenne François12ORCID,Fontaine Colin3

Affiliation:

1. Swiss Federal Institute for Forest Snow and Landscape Research (WSL) Birmensdorf Switzerland

2. Estación Biológica de Doñana (EBD‐CSIC) Sevilla Spain

3. Centre d'Écologie et des Sciences de la Conservation (UMR 7204) ‐ Muséum National d'Histoire Naturelle, CNRS Sorbone Université Paris France

Abstract

Abstract Müller et al. re‐analysed published data on temporal variation in insect biomass in Germany between 1989 and 2016, with a focus on modelling the effects of weather conditions on insect biomass. These upgraded analyses, using an external validation dataset, are a nice demonstration of the strong impact of climatic conditions on annual insect biomass. However, Müller et al.'s conclusion that temporal variation in weather conditions explained most of the temporal changes in insect biomass was overstated. We argue that their methodological approach was unsuitable to draw such conclusion, because of omitted variable bias. We re‐ran the analyses of Müller et al. but accounting for a remaining temporal trend in insect biomass due to missing drivers. Our results suggest that the main conclusion of Müller et al. was wrong: there is a significant temporal decline in insect biomass that is not explained by weather conditions. Our commentary recalls that not accounting for missing predictors is likely to produce highly biased results, especially when missing predictors are correlated with the available ones, which is likely to be the case for most of the anthropogenic pressures linked to global change. This highlights the difficult challenge of estimating the relative importance of the global change components in driving the observed biodiversity changes.

Funder

H2020 European Research Council

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3