Similar temporal patterns in insect richness, abundance and biomass across major habitat types

Author:

Gebert Friederike12ORCID,Bollmann Kurt1ORCID,Schuwirth Nele34ORCID,Duelli Peter1ORCID,Weber Dominique1ORCID,Obrist Martin K.1ORCID

Affiliation:

1. Swiss Federal Institute for Forest, Snow and Landscape Research WSL Birmensdorf Switzerland

2. Nanyang Technological University, Asian School of the Environment Singapore

3. Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

4. ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics Zürich Switzerland

Abstract

Abstract While many studies on insect diversity report declines, others show stable, fluctuating or increasing trends. For a thorough understanding of insect trends and their effects on ecosystem functioning, it is important to simultaneously assess insect richness, abundance and biomass, and to report trends for multiple taxa. We analysed insect richness, abundance and biomass data for all insects and for eight insect taxa (Buprestidae, Cerambycidae, Carabidae, other Coleoptera, Aculeata, other Hymenoptera, Heteroptera and Lepidoptera) from 42 sites across Switzerland from 2000 to 2007, representing three major habitat types in Switzerland (agricultural, unmanaged [open and forested] and managed forest habitats). As potential drivers of temporal patterns, we evaluated weather‐ and land‐use‐related factors. As predictors, we included temperature and precipitation as well as the vegetation index and the habitat type, respectively. We found a consistent pattern of stable or increasing trends for richness, abundance and biomass of insects in total and the eight taxa over 8 years. Both overall patterns and six out of eight taxa (except for Cerambycidae and Lepidotpera) showed the highest values in agricultural habitats. However, when accounting for elevation, there was no difference in open habitats regardless of whether they were used agriculturally. Habitat types were the most important predictors, followed by weather‐ and vegetation‐related factors. Modelled responses to mean temperature were unimodal, whereas the standard deviation of temperature showed positive and precipitation negative effects. Longer time series are needed to draw robust inferences and to investigate potential negative effects of future warming.

Publisher

Wiley

Subject

Insect Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3