Multi‐armed bandits, Thomson sampling and unsupervised machine learning in phylogenetic graph search

Author:

Wheeler Ward C.1

Affiliation:

1. Division of Invertebrate Zoology American Museum of Natural History 200 Central Park West New York NY 10024 USA

Abstract

AbstractA phylogenetic graph search relies on a large number of highly parameterized search procedures (e.g. branch‐swapping, perturbation, simulated annealing, genetic algorithm). These procedures vary in effectiveness over datasets and at alternative points in analytical pipelines. The multi‐armed bandit problem is applied to phylogenetic graph searching to more effectively utilize these procedures. Thompson sampling is applied to a collection of search and optimization “bandits” to favour productive search strategies over those that are less successful. This adaptive random sampling strategy is shown to be more effective in producing heuristically optimal phylogenetic graphs and more time efficient than existing uniform probability randomized search strategies. The strategy acts as a form of unsupervised machine learning that can be applied to a diversity of phylogenetic datasets without prior knowledge of their properties.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3