Digital assessments of soil organic carbon storage using digital maps provided by static and dynamic environmental covariates

Author:

Rahbar Alam Shirazi Fatemeh1,Shahbazi Farzin1ORCID,Rezaei Hossein1ORCID,Biswas Asim2

Affiliation:

1. Soil Science Department Faculty of Agriculture University of Tabriz Tabriz Iran

2. School of Environmental Sciences University of Guelph Guelph Ontario Canada

Abstract

AbstractUnderstanding the vertical and lateral distribution of soil organic carbon (SOC) and soil organic carbon density (SOCD) is indispensable for soil use and environmental management because of their vital role in soil quality assessments. Primarily, they are needed in calculating soil organic carbon storage (SOCS). The objective of this research was to provide digital maps of SOC and SOCD variation as well as their uncertainties at multiple standardized depths (H1: 0–5, H2: 5–15, H3: 15–30, H4: 30–60 and H5: 60–100 cm) using a parsimonious model with optimized terrain‐related attributes and satellite‐derived data. SOCS were evaluated at soil subgroup levels. An area of about 808 km2 with varying elevation, plant cover and lithology from the Miandoab region, West Azerbaijan Province, Iran was selected as a case study area. A total of 386 soil samples were collected from 104 profiles comprising various soil genetic horizons. A continuous spline function was then fitted to the target properties in advance of creating a dataset at five standard depth intervals (following the GlobalSoilMap project). These were then grouped into three classes including top (H1), middle (H2, H3 and H4) and bottom (H5) depths to ease interpretation. Static and dynamic covariates (30‐m resolution) were derived from a digital elevation model (DEM) and a suite of Landsat‐8 spectral imageries, respectively. Four candidate models including stepwise multiple linear regression (SMLR), random forest (RF), cubist (CU) and extreme gradient boosting (XGBoost) Tree were tested in this study. Finally, the digital maps at 30‐m resolution of SOC and SOCD and their uncertainties were prepared using the best‐fit model and the bootstrapping method, respectively. Four soil subgroups (Gypsic Haploxerepts, Typic Calcixerepts, Typic Haploxerepts and Xeric Haplocalcids) were identified across the study area. The covariates had variable contributions on the evaluated models. The XGBoost Tree model generally outperformed other models for prediction of SOC and SOCD (R2 = 0.60, on average). Regardless of soil subgroups, the uncertainty analysis showed that the SOCD map had a low prediction interval range value indicating high accuracy. Additionally, the highest SOCS and SOCD was observed at the top followed by middle and bottom depths in the study area. All subgroups exhibited a decreasing trend of SOCD with increasing depth. A similar trend was also observed for SOCS. The highest SOCD (on average) was observed in Gypsic Haploxerepts (4.71 kg C/m2) followed by Typic Calcixerepts (4.46 kg C/m2), Typic Haploxerepts (4.45 kg C/m2) and Xeric Haplocalcids (4.40 kg C/m2). Overall, the SOCS normalized by area within soil order boundaries was greater in Inceptisols than Aridisols across the study area. The findings of this study provide critical information for sustainable management of soil resources in the area for agricultural production and environmental health in the Miandoab region of Iran.

Publisher

Wiley

Subject

Pollution,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3