E3 ubiquitin ligase TaSDIR1‐4A activates membrane‐bound transcription factor TaWRKY29 to positively regulate drought resistance

Author:

Meng Ying1,Lv Qian1,Li Liqun1,Wang Bingxin1,Chen Liuping1,Yang Weibing1,Lei Yanhong1,Xie Yanzhou1,Li Xuejun1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy Northwest A&F University Yangling China

Abstract

SummaryDrought is a deleterious abiotic stress factor that constrains crop growth and development. Post‐translational modification of proteins mediated by the ubiquitin–proteasome system is an effective strategy for directing plant responses to stress, but the regulatory mechanisms in wheat remain unclear. In this study, we showed that TaSDIR1‐4A is a positive modulator of the drought response. Overexpression of TaSDIR1‐4A increased the hypersensitivity of stomata, root length and endogenous abscisic acid (ABA) content under drought conditions. TaSDIR1‐4A encodes a C3H2C3‐type RING finger protein with E3 ligase activity. Amino acid mutation in its conserved domain led to loss of activity and altered the subcellular localization. The membrane‐bound transcription factor TaWRKY29 was identified by yeast two‐hybrid screening, and it was confirmed as interacting with TaSDIR1‐4A both in vivo and in vitro. TaSDIR1‐4A mediated the polyubiquitination and proteolysis of the C‐terminal amino acid of TaWRKY29, and its translocation from the plasma membrane to the nucleus. Activated TaWRKY29 bound to the TaABI5 promoter to stimulate its expression, thereby positively regulating the ABA signalling pathway and drought response. Our findings demonstrate the positive role of TaSDIR1‐4A in drought tolerance and provide new insights into the involvement of UPS in the wheat stress response.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3