Deep skin homogeneity and light diffusion: An accelerated Monte Carlo model for in vivo skin characterization and consumer perception

Author:

Puccetti G.1

Affiliation:

1. Ashland, Personal Care – Skincare, Consumer Science Bridgewater New Jersey USA

Abstract

AbstractThe appearance of healthy and youthful skin is related to many factors of the skin optical properties as perceived by our visual sense. The optics of light travelling through human tissues has been extensively investigated in the field of biomedical applications, including the experimental characterization and modelling of skin optics and the propagation of light such as lasers through the layers. This work presents an innovative approach to probe deep skin by means of spectrally and spatially resolved light diffusion in the different layers of skin. Dual hyperspectral measurements of the panellist's skin are performed in vivo on subjects to obtain reflectance and light diffusion spectra. Both are simultaneously fitted by a GPU‐accelerated Monte Carlo model to obtain skin optical parameters as a function of depth. The results show a clear correlation between deep skin light diffusion at wavelengths above 590 nm and the subject age, which indicates a progressive degradation of skin homogeneity with age. The effect of this orange–red light diffusion background is to alter the colour tone of the skin. A skincare product is used to show that the warmer skin colour tone is clearly perceivable to consumers when evaluating facial images with and without the product. The product effect also correlates well with hyperspectral measurements. Lastly, this innovative approach demonstrates a first step in real‐time skin characterization for consumers and opens the door to customized cosmetic solutions for individual needs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3