Synergistic effects between global warming and water quality change on modelled macrophyte species richness

Author:

Lewerentz Anne12ORCID,Hoffmann Markus3ORCID,Hovestadt Thomas4ORCID,Raeder Uta3ORCID,Sarmento Cabral Juliano15ORCID

Affiliation:

1. Ecosystem Modeling, Center for Computational and Theoretical Biology, University of Würzburg Würzburg Germany

2. Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT) Karlsruhe Germany

3. Chair of Aquatic Systems Biology, Department of Life Science Systems, Limnologische Station Iffeldorf, School of Life Science, Technical University of Munich Iffeldorf Germany

4. Department Animal Ecology and Tropical Biology, Biozentrum, University of Würzburg Würzburg Germany

5. Biodiversity Modelling and Environmental Change, School of Biosciences, College of Life and Environmental Sciences, University of Birmingham Birmingham UK

Abstract

Submerged freshwater macrophytes are crucial for the functioning of lakes. Their growth and survival follow environmental conditions like light, temperature, and nutrient availability. Hence, the impending increase in water temperature as well as changes of nutrients and turbidity will lead to changes in macrophyte geographic and depth distribution: Herein, we assess these potential changes. We apply an eco‐physiological macrophyte growth model to simulate biomass growth and survival of virtual species defined by random trait combinations within expert‐derived trait ranges for oligotraphentic, mesotraphentic, and eutraphentic species groups in deep lakes in Bavaria, Germany, which cover clear, moderate, and turbid lake conditions. The emergent potential species richness is compared with empirically observed species richness to evaluate general predictions for current conditions. Thereafter, we apply the model to scenarios of temperature increase and of turbidity and nutrient change to assess potential changes in species richness and the influence of species' traits on being an environmental change ‘winner' or ‘loser'. We find a cross‐lake, hump‐shaped pattern of potential species richness along depth. This largely reflects observed patterns, although mismatches were also detected and might be explained by missing processes and environmental heterogeneity within the lake. Rising temperature leads to increased richness of potential species in all lake types, species groups, and depths. Turbidity and nutrient change effects depend on depth and lake type. ‘Loser species' under increased turbidity and nutrient level are light consumptive and sensible to disturbances, while ‘winner species' have a high biomass production. These findings show that the hump‐shaped depth distributions of submerged macrophyte diversity can emerge solely considering eco‐physiology. The differential responses to environmental changes imply that management measures must account for lake type because those responses can have opposite trends depending on lake depth and type.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3