Mapping urban large‐area advertising structures using drone imagery and deep learning‐based spatial data analysis

Author:

Ptak Bartosz1ORCID,Kraft Marek1ORCID

Affiliation:

1. Institute of Robotics and Machine Intelligence Poznań University of Technology Poznań Poland

Abstract

AbstractThe problem of visual pollution is a growing concern in urban areas, characterized by intrusive visual elements that can lead to overstimulation and distraction, obstructing views and causing distractions for drivers. Large‐area advertising structures, such as billboards, while being effective advertisement mediums, are significant contributors to visual pollution. Illegally placed or huge billboards can also exacerbate those issues and pose safety hazards. Therefore, there is a pressing need for effective and efficient methods to identify and manage advertising structures in urban areas. This article proposes a deep‐learning‐based system for automatically detecting billboards using consumer‐grade unmanned aerial vehicles. Thanks to the geospatial information from the drone's sensors, the position of billboards can be estimated. Side by side with the system, we share the very first dataset for billboard detection from a drone view. It contains 1361 images supplemented with spatial metadata, together with 5210 annotations.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3