Affiliation:
1. School of Remote Sensing and Information Engineering Wuhan University Wuhan China
2. College of Geography and Remote Sensing Sciences Xinjiang University Urumqi China
3. Net Zero and Resilient Farming Rothamsted Research North Wyke UK
4. School of Computer Science Wuhan University Wuhan China
5. Wuhan Geomatics Institute Wuhan China
Abstract
ABSTRACTWith the rapid urbanization in China, urban land resources gradually become the core of urban development. This study spatially evaluated the urban land resource carrying capacity (LRCC) with a case study of the built‐up area in Wuhan from 2015 to 2020. Following an evaluation index system, five critical LRCC indicators, including population density, GDP per land area, plot ratio, building density, and road network density, were selected by an analytical hierarchical process. The synthesis of indicators, however, is usually challengeable due to homogeneous assumptions of traditional techniques. In this study, we adopted a local technique, geographically weighted principal component analysis, to calculate a comprehensive carrying pressure (CCP) concerning spatially varying contributions of each indicator on their synthesis across different geographic locations. On mapping these spatial outputs of the built‐up area in Wuhan, the highest CCP was found in the central areas, where population size tends to be influential and the dominant variable in 62.69% of subdistricts. Furthermore, increased construction over the 5 years has led to an increased CCP in some of the peripheries of the built‐up area, and 55.22% of subdistricts show rising changes. With the GWPCA technique, this framework works well in evaluating and analyzing urban LRCC from a new local perspective.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities