Affiliation:
1. School of Water Conservancy and Civil Engineering Northeast Agricultural University Harbin China
2. International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education Harbin China
3. College of Engineering Northeast Agricultural University Harbin China
Abstract
AbstractThe management of phosphorus (P) resources is facing dual challenges mediated by human activities: the scarcity of bioavailable P in soil and the disposal of massive undeveloped P resources in waste streams. In China, large amounts of P resources remain unexploited, including crop straw (0.9 Tg/year), pig manure (1.1 Tg/year), sludges (0.2 Tg/year), faeces (0.5 Tg/year) and outbreaking algae (0.48 Tg/year). Traditional P recovery technologies, including precipitation, acidulation and thermochemistry technology (PAT) and enhanced biological phosphorus removal technology (EBPR), have shown limitations in P recovery from these biomass waste streams. Hydrothermal humification technology (HTH) is a promising new technology, capable of converting typical waste streams into phosphate fertilizer for green and sustainable development. We estimate that the amount of available P that HTH could potentially extract from straw, macroalgae waste and sludge totals 0.46 Tg/year. Accordingly, the consistent development of HTH for the recycling of waste P in biomass will effectively improve China's P cycle and relieve the absence of phosphate rock sources and environment pollution.
Subject
Pollution,Soil Science,Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献