Grain‐size component dependent storage threshold of orbital cycles in alluvial stratigraphy caused by autogenic dynamics

Author:

Yang Daming123,Huang Yongjian123ORCID,Li Xiang4,Gao Jianlei5,Yin Shitao12,Wang Chengshan123

Affiliation:

1. State Key Laboratory of Biogeology and Environmental Geology China University of Geosciences Beijing 100083 China

2. School of the Earth Sciences and Resources China University of Geosciences Beijing 100083 China

3. Frontiers Science Center for Deep‐time Digital Earth China University of Geosciences Beijing 100083 China

4. Department of Geology and Surveying and Mapping Shanxi Institute of Energy Jinzhong Shanxi 030600 China

5. School of Geosciences China University of Petroleum Qingdao 266580 China

Abstract

ABSTRACTNumerical forward modelling and laboratory experiments suggest that autogenic factors in the sediment routing system serve as long‐pass filters, preserving only orbital cycles with a period exceeding the compensation timescale, Tc, or thickness in the depth domain exceeding the compensation depth scale, Hc. For a specific orbital cycle with a certain period, this preservation in alluvial strata occurs unless it exhibits a sufficiently large amplitude. This study stratigraphically confirms, for the first time, the long‐pass filtering of autogenic dynamics using elemental data from the alluvial–lacustrine Sifangtai and Mingshui formations in the Songliao Basin. Spectral analysis of the Si and Zr series in coarse‐grained sediments reveals no cyclic signal with thicknesses below the estimated lower limits of Hc. This implies that the spatial storage threshold for orbital cycles in proxies of the coarse‐grained sediment component is equal to or less than Hc. However, cyclic signals of obliquity and precession with smaller thicknesses are identified in Ti, Fe and Al enriched in the fine‐grained sediment components of the stratigraphy. Notably, previously reported proxies preserving high‐frequency orbital cycles are derived from fine‐grained sediment components, differing from the sedimentation rate series used in the reported experimental studies. Therefore, the authors hypothesize a grain‐size component‐dependent storage threshold, suggesting that the storage threshold of orbital cycles in proxies associated with fine‐grained components is lower. This hypothesis arises from the weaker effect of autogenic dynamics on the content of fine‐grained sediment components transported to the sampling site by a suspended load compared to coarser components that are subjected to stronger autogenic dynamics within or near channels. The hypothesis and model presented propose a dynamic process elucidating the nuanced roles of autogenic dynamics in preserving orbital cycles. This perspective, considering sediment composition, inspires prioritizing proxies enriched in the fine‐grained fraction for identifying allogenic cycles in alluvial strata.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3