Static analysis of semi‐underground double‐storey squat silo

Author:

Jin Li‐bing12ORCID,Wang Xu1,Zhang Wei‐bo1,Fan Tai12,Wu Qiang12

Affiliation:

1. Institute of Long‐term Performance on Concrete Structures Henan University of Technology Zhengzhou China

2. Henan Key Laboratory of Grain and Oil Storage Facility & Safety, HAUT Zhengzhou China

Abstract

AbstractThe semi‐underground double‐storey squat silo (SUDSSS) is a new type of silo with the advantages of preserving grain quality. In this paper, a numerical model of SUDSSS was constructed using solid elements. The proposed numerical model was validated by test results of an experimental underground silo, and the results demonstrated that: (1) Before and after backfilling, the radial and circumferential stress of the underground storey reached their maximum at 2/3 from the bottom and 2/3 from the ground surface, respectively; (2) As the height of grain storage increases, the silo wall stress in the overground storey increases. From the top of the underground storey up to 1/4 height of the overground storey, the stress of silo wall increases. (3) For the underground storey, the maximum stress occurs at 1/3 of the way from the apex of bottom cone.Practical applicationsThe semi‐underground double‐storey squat silo is a new grain storage device proposed by this paper, which consists of two layers. The lower layer is located in the ground and can utilize the shallow ground temperature to realize the green and low‐temperature storage of grain, the upper layer is conducive to the turnover of grain, which can ensure the quality of grain storage. The new silo has the advantages of saving land, energy saving and carbon reduction. Based on the silo, this paper investigates the stress–strain properties of the silo before and after soil backfilling during the construction stage, and obtains the change pattern of the static mechanical properties of the silo. This paper analyses the mechanical properties of semi‐underground double‐storey squat silo under different storage conditions at the grain storage stage, and studies the change patterns of the mechanical properties of the silo body under different storage heights.

Publisher

Wiley

Reference34 articles.

1. Silo Design Codes: Their Limits and Inconsistencies

2. Virtual design of underground grain silo based on BIM;Chen G. X.;Journal of Henan University of Technology (Natural Science Edition),2014

3. China National Standards. (2010).GB/T 50107—2010: Standard for evaluation of concrete compressive strength. National Standards of the People's Republic of China.

4. The experiment and analysis of the stress dip underneath the granular silo

5. Static and dynamic pressure measurements of maize grain in silos under different conditions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3