Feature area size prediction method of spherical fruit based on projection transformation

Author:

Huang Bohan1ORCID,Xue Long12,Yin Chaoyang1,Li Jing123ORCID,Liu Muhua123

Affiliation:

1. College of Engineering Jiangxi Agricultural University Nanchang China

2. Key Laboratory of Modern Agricultural Equipment Nanchang China

3. Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province Nanchang China

Abstract

AbstractWith the development of machine vision and spectral detection technology, online sorting of fruit internal and external quality has been developed rapidly. However, for spherical fruits, it is difficult to obtain full surface images during sorting, so it is difficult to accurately calculate the size of the surface defects and the ratio of defects to the full surface. In this paper, a full surface line scanning image acquisition device for spherical fruit is proposed. Based on this device, the line scanning hyperspectral image of spherical fruit is collected, and the original image is extracted by feature extraction and background removal. Next, the isometric projection image and the equivalent projection image of the feature image is obtained through cartography projection transformation; The number of feature pixels in the original feature image, the isometric projection image, the equivalent projection image, and the width of the original feature image are used as input parameters to predict the actual defect area with the help of the shallow neural network. In this paper, the equipment and method are verified using three test balls with different diameters and pasting different sizes of identification blocks at different positions on their surfaces. The experimental results show that the prediction accuracy R of the test set of the model is 0.9937, and the RMSE is 0.3391 cm2. It can be seen that the method has good prediction accuracy, which can provide a reference for the hyperspectral on‐line sorting method of external quality of spherical fruit.Practical applicationThis method provides an effective solution for the quality sorting production line of spherical fruits. In addition to agricultural product quality testing and food quality testing, similar to the detection of industrial products such as ball balls, the scheme provided in this manuscript can also be used as one of the options.The method proposed in this manuscript is suitable for all kinds of line scanning equipment, including hyperspectral imager and laser profilometer.

Funder

Key Science and Technology Research Project in Jiangxi Province Department of Education

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3