Impact study of operating parameters on drying evolution of spherical tea particle under convective influence

Author:

Kumar Shantanu1,Kumar K. Ravi1ORCID,Dashora Kavya2

Affiliation:

1. Department of Energy Science and Engineering Indian Institute of Technology Delhi New Delhi India

2. Centre for Rural Development and Technology Indian Institute of Technology Delhi New Delhi India

Abstract

AbstractTea is an important industrial crop. It is the second most popular among all the drinks. The drying operation in the tea industry fulfills the aim of enzyme inactivation and reducing the moisture content to the desired level. The energy consumption in drying operation in the tea industry is mostly in the form of thermal energy. Drying consumes a greater amount of energy than other processes in tea industries. Thermal energy needs are met mainly through fossil fuels. Renewable energy sources such as bioenergy and solar energy are also being adopted but at the minute level. Further, addressing problems such as stewing and case hardening (arises due to improper drying conditions) during drying is necessary to avoid quality loss. In this study, mass transfer modeling of drying of crush tear curl (CTC) tea particles is conducted considering natural convection around the tea particle. A finite difference method with an explicit scheme is used to solve the equations for mass transfer modeling of drying. The effect of drying air temperatures on moisture content, moisture ratio, and drying rates are computed. Drying air temperatures such as 80, 90, and 100°C have not shown effective drying. However, drying at air temperatures of 110, 120, and 130°C are recommended for drying times of 1500 s, 1200 s–1500 s, and 1200 s, respectively. Additionally, the effect of the size of the particles is studied and the lower size of tea particles is recommended for better drying characteristics. The current drying model can be used for single tray/conveyor dryers and indirect natural convection single tray solar dryer.Practical applicationsThe present research work demonstrates the important information for the hot air drying of CTC tea particle in single tray dryer. The drying modeling results can be used to set the proper temperature level of drying air being sent inside the dryer to avoid the under and over‐drying of tea particle and achieve the desired level of moisture content in the tea particle. Thus, the present study helps in deciding drying conditions such as drying temperature, drying duration for CTC tea particle in single tray dryer, slow speed conveyor dryer, and also in indirect natural convection single tray solar dryer.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3