Global change and plant–pollinator communities in Mediterranean biomes

Author:

Kantsa Aphrodite1ORCID,De Moraes Consuelo M.1ORCID,Mescher Mark C.1ORCID

Affiliation:

1. Department of Environmental Systems Science ETH Zurich Zurich Switzerland

Abstract

AbstractAimOccurring in five distinct global regions, Mediterranean‐type ecosystems (MTEs) include both centres of agricultural production and hotspots of extratropical biodiversity – particularly for plants and bees. Considerable research has addressed the persistence of highly diverse biological communities within MTEs, despite their typically long histories of anthropogenic and natural disturbance. However, important questions remain, especially regarding the limits of ecological resilience in the face of accelerating environmental change. Here, we explore current knowledge regarding the effects of disturbance on MTE plant–pollinator communities.LocationMediterranean Basin, California, Cape Province in South Africa, Central Chile and Southern South‐Western Australia.Taxa StudiedFlowering plants and pollinators (insects, birds and mammals).MethodsWe reviewed the available literature about MTE plant–pollinator communities via a systematic search that yielded 234 case studies. We analysed this dataset to quantify research efforts across regions and taxonomic groups, the proportion of surveys addressing ecological interactions (i.e. rather than only taxonomic diversity) and the availability of work addressing community responses to specific stressors (viz. climate change, landscape alteration, fire, farming, grazing, urbanization and species introductions).ResultsCurrent knowledge on MTE plant–pollinator communities is dominated by work from the northern Mediterranean Basin, while the Southern Hemisphere and California are markedly understudied by comparison. Taxonomic coverage is similarly uneven, with 58% of studies focusing only on a single pollinator group. Furthermore, less than half of the surveys address ecological networks. Finally, despite some pioneering work addressing fire, climate and species introductions, only 13% focus on the impact of stressors on interaction networks.OutlookBased on our findings, we identify a need for coordinated international research efforts focusing on (i) community‐level studies, observational and experimental, (ii) ecological networks, (iii) functional traits mediating post‐disturbance recovery and (iv) impacts of combined/synergistic stressors. Progress in these areas will facilitate predictions about the long‐term impacts of global change on MTE plant–pollinator communities.

Funder

Eidgenössische Technische Hochschule Zürich

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3