The phylogeny of ceutorhynchine weevils (Ceutorhynchinae, Curculionidae): Mitogenome data improve the resolution of tribal relationships

Author:

Letsch Harald1ORCID,Vukotić Sonja1ORCID,Gottsberger Brigitte1,Friedman Ariel Leib Leonid2,Wanat Marek3,Beran Franziska4,Fiedler Konrad1,Riedel Alexander5ORCID

Affiliation:

1. Department of Botany and Biodiversity Research University of Vienna Vienna Austria

2. Steinhardt Museum of Natural History University of Tel Aviv Tel Aviv‐Yafo Israel

3. Museum of Natural History Wrocław University Wrocław Poland

4. Population Ecology Group Friedrich Schiller University Jena Jena Germany

5. Museum of Natural History Karlsruhe Karlsruhe Germany

Abstract

AbstractCeutorhynchinae Gistel are a diverse weevil subfamily of almost worldwide distribution and considerable economic importance. Nevertheless, the classification of Ceutorhynchinae and their phylogenetic relationships are not yet fully resolved. Here, we sequenced the mitogenomes of 54 ceutorhynchine species. Phylogenetic analyses by maximum likelihood and Bayesian inference were performed on a dataset of 13 protein‐coding and two ribosomal genes. All analyses recovered three well supported clades A–C. A principal component analysis shows that codon usage differs considerably between these clades, indicating a compositional asymmetry in ceutorhynchine mitogenomes. This increased the challenge of resolving the early relationships among the three clades. The resolution of the later diversification was more robust, and the resulting topologies were largely compatible with each other and with the current taxonomic classification. Exceptions are the genera Micrelus Thomson, which is transferred from the tribe Ceutorhynchini to Egriini Pajni and Kohli (new position) and Amalus Schoenherr, which is transferred to Phytobiini Gistel (new position). Amalini Wagner 1936 is a junior synonym of Phytobiini Gistel 1848 (syn. n.). Coeliodini Lacordaire (new status), a tribe previously regarded as junior synonym of Ceutorhynchini, is re‐established. Our analyses also clarified the difficult assignments of taxa to the tribes Scleropterini Schultze and Phytobiini. All taxa with the ability to jump as adult beetles belong to clade B, which comprises the tribes Cnemogonini Colonnelli, Hypurini Schultze, Mecysmoderini Wagner and Phytobiini. With dense taxon sampling and appropriate analytical methods, mitogenome data provide a phylogeny well suited to improve the traditional classification of this neglected and species‐rich taxon.

Funder

Austrian Science Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3