Target enrichment museomics of the Asian long‐horned beetle and its relatives (Cerambycidae: Anoplophora) reveals two independent origins of life in the cold

Author:

Kim Sangil1ORCID,Farrell Brian D.1ORCID

Affiliation:

1. Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology Harvard University Cambridge Massachusetts USA

Abstract

AbstractResolving a robust phylogeny of an organismal group is often hindered by the limited availability of samples suitable for genomic or transcriptomic sequencing. Even for lineages of notable importance in evolutionary ecology, our phylogenetic comprehension remains largely unsatisfactory due to the challenges of acquiring samples across the clade. The long‐horned beetle genus Anoplophora Hope exemplifies such a group, globally renowned for two invasive pests—the Asian long‐horned beetle and citrus long‐horned beetle—which have inflicted significant damage to deciduous hardwood forest in North America and Europe. In contrast to the two temperate pests, the remaining 50 species in the genus inhabit subtropical forests of Southeast Asia, where most species are only infrequently encountered. Here, we present the first comprehensive phylogeny of Anoplophora using a PCR‐based target enrichment museomics approach. As a case study of employing PCR‐generated custom probes, we demonstrate the robustness and cost‐effectiveness of this in‐house method in successfully acquiring sequence data from historical specimens. Through extensive sampling of Anoplophora using museum specimens, we reveal a non‐sister relationship between the two temperate species and provide evidence for addressing taxonomic conundrums. Our biogeographical analyses indicate that the adaptation of the two temperate species occurred independently during the late Pliocene and Pleistocene after the establishment of temperate forests in East Asia in the late Miocene. Our findings highlight the importance of comprehensive phylogenetic inference in understanding the patterns and processes of these beetles' adaptation to temperate forests and lay the groundwork for investigating the genetic mechanism underlying life in the cold.

Funder

Museum of Comparative Zoology, Harvard University

Coleopterists Society

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3