Legacy effects of Phragmites australis and herbicide treatments can reduce survival but do not prevent native plant establishment

Author:

Bowe Audrey1,Simek Zachary2,Dávalos Andrea13,Blossey Bernd1ORCID

Affiliation:

1. Department of Natural Resources & the Environment Cornell University Fernow Hall, 226 Mann Drive Ithaca NY 14853 U.S.A.

2. The Nature Conservancy 8 Nature Way Keene Valley NY 12943 U.S.A.

3. Department of Biological Sciences SUNY Cortland Bowers Hall, Gerhart Drive Cortland NY 13045 U.S.A.

Abstract

Introduced Phragmites australis represents a widespread threat to North American wetlands. Management agencies invest millions of dollars annually to manage the species, mostly by applying herbicides, to mitigate and prevent negative impacts. The often temporary reduction of P. australis rarely increases native diversity, and long‐term legacy effects of P. australis and repeat herbicide treatments are unknown. We used a coordinated management program targeting mostly small P. australis populations in the Adirondack Park in New York State, United States, to assess the potential for such legacy effects. We planted individuals of three native species as sentinels into treated and untreated, uninvaded reference wetlands after unassisted succession had occurred in treatment areas. Sentinel plants survived and grew in treated areas, suggesting legacy of P. australis and its management did not permanently limit establishment of native plants. However, responses were variable among sentinel species, with negative or neutral impacts on survival rates and neutral or positive effects on growth. Species‐specific responses and large variation in survival rates between sites and sentinels indicate that site factors are a dominant influence on survival and growth. Importantly, as treatment frequency increased, survival of one sentinel species decreased significantly, indicating a potential for long‐term negative impacts of repeated herbicide applications. Additional replanting after P. australis treatment and initial unassisted plant succession may enable more diverse plant communities to return, including species not able to recruit from local seed banks or seed sources. However, it remains unclear if active transplanting will enable more long‐term suppression of P. australis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3