Genomic predictions and GWAS for heat tolerance in pigs based on reaction norm models with performance records and data from public weather stations considering alternative temperature thresholds

Author:

Freitas Pedro Henrique F.1,Johnson Jay S.2,Tiezzi Francesco3,Huang Yijian4,Schinckel Allan P.1,Brito Luiz F.1ORCID

Affiliation:

1. Department of Animal Sciences Purdue University West Lafayette Indiana USA

2. USDA‐ARS Livestock Behavior Research Unit West Lafayette Indiana USA

3. Department of Agriculture, Food, Environment and Forestry University of Florence Firenze Italy

4. Smithfield Premium Genetics Rose Hill North Carolina USA

Abstract

AbstractGenetic improvement of livestock productivity has resulted in greater production of metabolic heat and potentially greater susceptibility to heat stress. Various studies have demonstrated that there is genetic variability for heat tolerance and genetic selection for more heat tolerant individuals is possible. The rate of genetic progress tends to be greater when genomic information is incorporated into the analyses as more accurate breeding values can be obtained for young individuals. Therefore, this study aimed (1) to evaluate the predictive ability of genomic breeding values for heat tolerance based on routinely recorded traits, and (2) to investigate the genetic background of heat tolerance based on single‐step genome‐wide association studies for economically important traits related to body composition, growth and reproduction in Large White pigs. Pedigree information was available for 265,943 animals and genotypes for 8686 animals. The studied traits included ultrasound backfat thickness (BFT), ultrasound muscle depth (MDP), piglet weaning weight (WW), off‐test weight (OTW), interval between farrowing (IBF), total number of piglets born (TNB), number of piglets born alive (NBA), number of piglets born dead (NBD), number of piglets weaned (WN) and weaning‐to‐estrus interval (IWE). The number of phenotypic records ranged from 6059 (WN) to 172,984 (TNB). Single‐step genomic reaction norm predictions were used to calculate the genomic estimated breeding values for each individual. Predictions of breeding values for the validation population individuals were compared between datasets containing phenotypic records measured in the whole range of temperatures (WR) and datasets containing only phenotypic records measured when the weather station temperature was above 10°C (10C) or 15°C (15C), to evaluate the usefulness of these datasets that may better reflect the within‐barn temperature. The use of homogeneous or heterogeneous residual variance was found to be trait‐dependent, where homogeneous variance presented the best fit for MDP, BFT, OTW, TNB, NBA, WN and IBF, while the other traits (WW and IWE) had better fit with heterogeneous variance. The average prediction accuracy, dispersion and bias values considering all traits for WR were 0.36 ± 0.05, −0.07 ± 0.13 and 0.76 ± 0.10, respectively; for 10C were 0.39 ± 0.02, −0.05 ± 0.07 and 0.81 ± 0.05, respectively; and for 15C were 0.32 ± 0.05, −0.05 ± 0.11 and 0.84 ± 0.10, respectively. Based on the studied traits, using phenotypic records collected when the outside temperature (from public weather stations) was above 10°C provided better predictions for most of the traits. Forty‐three and 62 candidate genomic regions were associated with the intercept (overall performance level) and slope term (specific biological mechanisms related to environmental sensitivity), respectively. Our results contribute to improve genomic predictions using existing datasets and better understand the genetic background of heat tolerance in pigs. Furthermore, the genomic regions and candidate genes identified will contribute to future genomic studies and breeding applications.

Publisher

Wiley

Subject

Animal Science and Zoology,Food Animals,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3