Climate drives body mass changes in a mountain ungulate: shorter winters lead to heavier Alpine ibex

Author:

Brambilla Alice12ORCID,von Hardenberg Achaz3ORCID,Bassano Bruno2,Ranghetti Luigi4ORCID,Keller Lukas1ORCID,Festa‐Bianchet Marco5ORCID

Affiliation:

1. University of Zurich Zurich Switzerland

2. Gran Paradiso National Park Torino Italy

3. University of Chester Chester UK

4. Bergamo Italy

5. University of Sherbrooke Sherbrooke QC Canada

Abstract

Climate affects seasonality and plant phenology, which can influence seasonal body mass dynamics of herbivores in temperate environments. We investigated long‐term trends of seasonal body mass changes in male Alpine ibex Capra ibex. We used SEM to test direct and indirect relationships between body mass, mass changes and environmental and climatic variables. Individually recognizable Alpine ibex were weighed repeatedly between 2000 and 2022 in Gran Paradiso National Park (Italy). Autumn mass increased substantially over these two decades, up to 15% in some age classes. Over the same time frame, both summer mass gain and winter mass loss decreased, suggesting that heavier autumn body mass was due to the cumulative effects of reduced mass loss over several winters. The environmental factor with the strongest effects on winter mass changes was the starting date of vegetation green‐up at low altitude, where ibex gather after winter to feed on new growth vegetation. Early springs led to lower winter mass loss, likely because ibex relied on stored fat for a shorter period and had greater access to forage. High population density also increased winter mass loss. Environmental conditions and resource availability, possibly also influenced by density in winter and early spring, seem therefore to directly affect the body mass dynamics of male Alpine ibex, while the effect of summer conditions appears less relevant. By affecting seasonal body mass dynamics, climate change may have consequences for life history and population dynamics of mountain herbivores, for example via earlier access of young males to reproduction.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3