Single-step antibiotic-mediated synthesis of kanamycin-conjugated gold nanoparticles for broad-spectrum antibacterial applications

Author:

Patil T.1,Khot V.2,Pandey-Tiwari A.1ORCID

Affiliation:

1. Department of Medical Biotechnology, Center for Interdisciplinary Research D.Y. Patil Education Society (Institution Deemed to be University) Kolhapur Maharashtra India

2. Department of Medical Physics, Center for Interdisciplinary Research D.Y. Patil Education Society (Institution Deemed to be University) Kolhapur Maharashtra India

Abstract

Abstract Widespread and irrational use of antibiotics results in the development of antibiotic-resistant bacteria. Thus, there is a need to develop novel antibacterial agents in order to replace conventional antibiotics and to increase the efficacy of already existing antibiotics by combining them with other materials. Herein, a single-step antibiotic-mediated synthesis of antibiotic-conjugated gold nanoparticles is reported. In this single-step method antibiotic Kanamycin, an aminoglycoside itself plays the role of reducing as well as capping agent by reducing gold salt into gold nanoparticles. The kanamycin-conjugated gold nanoparticles (Kan-AuNPs) were confirmed by UV–Visible spectroscopy and further physico-chemically characterized by various instrumental techniques. Synthesized Kan-AuNPs showed broad-spectrum antibacterial activity against Gram-positive Staphylococcus aureus as well as Gram-negative Escherichia coli bacterial strains. They are also found to be effective against Pseudomonas aeruginosa and pathogenic E. coli isolated from urinary tract infections (UTIs) patients, which are responsible to cause hospital-acquired infections like nosocomial, burn wound and UTIs. The minimum inhibitory concentration (MIC) of Kan-AuNPs is 50 μg ml−1 for S. aureus and E. coli, 125 μg ml−1 for P. aeruginosa and 100 μg ml−1 for E. coli isolated from UTIs patients. It is also evident that the MIC of Kan-AuNPs for antibacterial activity is lower as compared to antibiotic kanamycin alone for all bacterial strains. Hence, the one-step strategy of synthesis for Kan-AuNPs is a suitable strategy for fighting infectious bacterial strains in hospitals, healthcare and the pharmaceutical industry.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3