The detection of Bursaphelenchus xylophilus via accelerated strand exchange amplification: An ultra‐rapid and accurate method

Author:

Wang Xiujuan1,Chen Jiao1,Zhang Jinxiu1,Duan Yake1,Zhang Xin1,Shi Chao2,Li Yong1,Ma Cuiping1ORCID

Affiliation:

1. Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, College of Marine Science and Biological Engineering Qingdao University of Science and Technology Qingdao PR China

2. Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University Qingdao University Qingdao PR China

Abstract

AbstractOne of the most damaging pathogens of pinewood is the pinewood nematode, Bursaphelenchus xylophilus, which could cause an adverse effect on the ecosystems of forests and the commerce of timber. Therefore, it is crucial to realize rapid and accurate B. xylophilus detection. In this work, an accelerated strand exchange amplification method (ASEA) was established to detect B. xylophilus for the first time. By integrating with fast nucleic acid extraction, the whole detection procedure could be finished within 30 min, dramatically shortened the detection time. The ASEA method exhibited high specificity towards B. xylophilus and the detection limit for B. xylophilus plasmid DNA was as low as 1.0 × 100 copies/μL. Furthermore, the ASEA approach also exhibited accurate detection for B. xylophilus when applied to actual pinewood samples, meeting the demand of B. xylophilus detection in realistic scenario. We believe the ASEA method has significant potential for B. xylophilus detection, and it will be helpful for controlling forest pest and quarantine regulations.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Shandong Province

Qingdao Postdoctoral Science Foundation

Publisher

Wiley

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3