Affiliation:
1. Plant Pathology and Plant‐Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech Geneva New York USA
2. Cornell Vegetable Program, Cornell Cooperative Extension Canandaigua New York USA
Abstract
AbstractTable beet (Beta vulgaris ssp. vulgaris) root suitability for processing into cans and jars is dictated by quality and shoulder diameter (crown width). For shoulder diameter, roots are sorted into six classes and those in the small (19.1–44.5 mm) and small/medium (44.6–40.8 mm) classes are considered suitable. Smaller (≤19 mm) roots are usually lost in harvesting while larger (≥40.9 mm) roots are typically discarded. Exogenous (foliar‐applied) gibberellic acid 3 (GA3) may alter source‐sink carbohydrate partitioning with potential advantages for processing table beet producers. Small plot replicated trials were conducted in each of 3 years (2020, 2021 and 2022) to evaluate the effect and optimal timing of exogenous GA3 on table beet yield components in New York, USA. GA3 was applied as ProGibb at 30 ppm in all trials and as ProGibb at 30 ppm and FalGro 2X LV at 67 ppm (label rates) in 2022. GA3 as ProGibb resulted in significant increases in foliar health attributes (leaf blade length and width, petiole diameter, normalized difference vegetative index and dry weight of foliage). GA3 as ProGibb significantly reduced average root shoulder diameter and affected the percentage of roots in various size categories. The percentage of tiny roots (<19 mm) was significantly decreased while the percentage of small roots was increased. The percentage of small/medium roots were unaffected. In 2022, the percentage of small roots was significantly increased compared to nontreated plots but was not significantly different between GA3 as either ProGibb or FalGro applied at 42 or 62 Days after Planting (DAP). Exogenous GA3 had no consistent, significant effect on the severity of the foliar disease, Cercospora leaf spot. The significant increase in foliar health attributes from GA3 is beneficial for harvest that relies upon top pulling machinery. Increases in the percentage of small roots and reductions in tiny roots can reduce wasted crop input investments. The optimal number of GA3 applications was seasonally dependent, ranging from a single application at 40 or 62 DAP in 2 years, to two applications in 2021. GA3 applications late (>80 DAP) in the cropping season had no significant effect on foliar health attributes or root yield components. The implications of these results on the New York table beet processing industry are discussed.
Subject
Agronomy and Crop Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献