Quantifying uncertainty in fatigue crack growth of SLM 316L through advanced predictive modeling

Author:

Haselibozchaloee Danial1ORCID,Correia José A. F. O.1,Braga Daniel F. O.2ORCID,Cipriano Gonçalo2,Reis Luis3ORCID,Manuel Lance4,Moreira Pedro M. G. P.2

Affiliation:

1. Civil Engineering Department, Faculty of Engineering University of Porto Porto Portugal

2. Institute of Science and Innovation in Mechanical and Industrial Engineering Porto Portugal

3. IDMEC, Instituto Superior Técnico University of Lisbon Lisbon Portugal

4. Department of Civil, Architectural, and Environmental Engineering (CAEE) University of Texas at Austin Austin Texas USA

Abstract

AbstractOptimizing structural designs is crucial today, with additive manufacturing, particularly selective laser melting, gaining prominence. Thorough mechanical characterization of new materials remains vital. This paper investigates fatigue crack growth behavior in SLM 316L specimens under cyclic loading conditions. The study addresses result uncertainties by using CT specimens aligned along three building directions per ASTM E647 standards and a constant loading ratio (R = 0.1), necessitating mean value and confidence interval predictions. Departing from linear prediction models, innovative Bootstrap Polynomial and Power Regression Models and Bayesian Nonlinear Regression Model updated posterior distribution by Markov Chain Monte Carlo are employed. These approaches leverage bootstrapping to construct confidence intervals, offering robustness and flexibility in handling non‐normal data behavior and limited sample sizes. They provide tailored fits to data curvature, revealing limitations of linear prediction models in capturing observed nonlinear behavior, enhancing reliability in additive manufacturing applications, and advancing material science and engineering.

Funder

Third Health Funds

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3