Meta‐analytical evidence for frequency‐dependent selection across the tree of life

Author:

Gómez‐Llano Miguel1ORCID,Bassar Ronald D.2,Svensson Erik I.3ORCID,Tye Simon P.4,Siepielski Adam M.4ORCID

Affiliation:

1. Department of Environmental and Life Science Karlstad University Karlstad Sweden

2. Department of Biological Sciences Auburn University Auburn Alabama USA

3. Department of Biology Lund University Lund Sweden

4. Department of Biological Sciences University of Arkansas Fayetteville Arkansas USA

Abstract

AbstractExplaining the maintenance of genetic variation in fitness‐related traits within populations is a fundamental challenge in ecology and evolutionary biology. Frequency‐dependent selection (FDS) is one mechanism that can maintain such variation, especially when selection favours rare variants (negative FDS). However, our general knowledge about the occurrence of FDS, its strength and direction remain fragmented, limiting general inferences about this important evolutionary process. We systematically reviewed the published literature on FDS and assembled a database of 747 effect sizes from 101 studies to analyse the occurrence, strength, and direction of FDS, and the factors that could explain heterogeneity in FDS. Using a meta‐analysis, we found that overall, FDS is more commonly negative, although not significantly when accounting for phylogeny. An analysis of absolute values of effect sizes, however, revealed the widespread occurrence of modest FDS. However, negative FDS was only significant in laboratory experiments and non‐significant in mesocosms and field‐based studies. Moreover, negative FDS was stronger in studies measuring fecundity and involving resource competition over studies using other fitness components or focused on other ecological interactions. Our study unveils key general patterns of FDS and points in future promising research directions that can help us understand a long‐standing fundamental problem in evolutionary biology and its consequences for demography and ecological dynamics.

Funder

Vetenskapsrådet

Division of Environmental Biology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3