Prediction ability of an alternative multi‐trait genomic evaluation for residual feed intake

Author:

Pravia Maria Isabel1ORCID,Navajas Elly Ana1ORCID,Aguilar Ignacio1ORCID,Ravagnolo Olga1ORCID

Affiliation:

1. Instituto Nacional de Investigación Agropecuaria, INIA Uruguay Canelones Uruguay

Abstract

AbstractSelection for feed efficiency is the goal for many genetic breeding programs in beef cattle. Residual feed intake has been included in genetic evaluations to reduce feed intake without compromising performance traits as liveweight, body gain or carcass traits. However, measuring feed intake is expensive, and only a small percentage of selection candidates are phenotyped. Genomic selection has become a very important tool to achieve effective genetic progress in these traits. Another effective strategy has been the implementation of multi‐trait prediction using easily recordable predictor traits on both reference animals and candidates without phenotypes, and this could be another inexpensive way to increase accuracy. The objective of this work was to analyse and compare the prediction ability of two alternative different approaches to predict GEBVs for RFI. The population of inference was Hereford bulls in Uruguay that were genotyped candidates for to selection. The first model was the conventional univariate model for RFI and the second model was a multi‐trait model which included a predictor trait (weaning weight, WW), in addition to the traits used in the first one (dry matter intake, metabolic mid test weight, average daily gain and ultrasound back fat) (DMI, MWT, ADG, UBF, respectively). GEBVs from the multi‐trait model were combined using selection index theory to derive RFI values. All analyses were performed using ssGBLUP procedure. The prediction ability of both models was tested using two validation strategies (30 different replicates of random groups of animals and validation across 9 different feed intake tests). The prediction quality was assessed by the following parameters: bias, dispersion, ratio of accuracies and the relative increase in accuracy by adding phenotypic information. All parameters showed that the univariate model outperforms the multi‐trait model, regardless of the validation strategy considered. These results indicate that including WW as a proxy trait in a multi‐trait analysis does not improve the prediction ability when all animals to be predicted are genotyped.

Publisher

Wiley

Subject

Animal Science and Zoology,Food Animals,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3