Whole genome microarray expression analysis in blood identifies pathways linked to signs and symptoms of a patient with hypercalprotectinaemia and hyperzincaemia

Author:

Isaksson H S1ORCID,Farkas S A1,Müller P2,Gustafsson D3,Nilsson T K4

Affiliation:

1. Department of Laboratory Medicine, Örebro University Hospital, Faculty of Medicine and Health, Örebro University, Sweden

2. Affymetrix Core Facility at Novum, BEA, Karolinska Institute, Huddinge, Sweden

3. Department of Pediatrics, Örebro University Hospital, Faculty of Medicine and Health, Örebro University, Umeå, Sweden

4. Department of Medical Biosciences, Clinical Chemistry, Umeå University, Umeå, Sweden

Abstract

Summary A child, 2 years with the ‘hypercalprotectinaemia with hyperzincaemia’ clinical syndrome, presented with atypical symptoms and signs, notably persistent fever of approximately 38°C, thrombocythaemia of > 700 × 109/l and a predominance of persistent intestinal symptoms. In an effort to find a cure by identifying the dysregulated pathways we analysed whole-genome mRNA expression by the Affymetrix HG U133 Plus 2·0 array in blood on three occasions 3–5 months apart. Major up-regulation was demonstrated for the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway including, in particular, CD177, S100A8, S100A9 and S100A12, accounting for the thrombocytosis; a large number of interleukins, their receptors and activators, accounting for the febrile apathic state; and the high mobility group box 1 (HMBG1) gene, possibly accounting for part of the intestinal symptoms. These results show that gene expression array technology may assist the clinician in the diagnostic work-up of individual patients with suspected syndromal states of unknown origin, and the expression data can guide the selection of optimal treatment directed at the identified target pathways.

Funder

Karolinska Institute and the Research Committee

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3