Disentangling thermal from alternative drivers of reflectance in jewel beetles: A macroecological study

Author:

Wang Lu‐Yi1ORCID,Franklin Amanda M.1ORCID,Hugall Andrew F.12,Medina Iliana1ORCID,Stuart‐Fox Devi1ORCID

Affiliation:

1. School of Biosciences The University of Melbourne Melbourne Victoria Australia

2. Sciences Department Museums Victoria Melbourne Victoria Australia

Abstract

AbstractAimTo predict future colour–climate relationships, it is important to distinguish thermal drivers of reflectance from other evolutionary drivers. We aimed to achieve this by comparing relationships between climate and coloration in ultraviolet–visible (UV–Vis) and near‐infrared (NIR) light, separately.LocationSamples were distributed primarily across Australia and North America, with some from Africa and Asia.Major taxa studiedColeoptera: Buprestidae.MethodsWe used jewel beetles as models to identify climatic drivers of reflectance, because jewel beetles have highly diverse coloration and a wide distribution and are often active in hot conditions. Specifically, we tested the association between climate, body size and reflectance using a phylogenetic comparative analysis for three wavebands (UV–Vis, NIR and total).ResultsReflectance of jewel beetles was more strongly predicted by body size than by climate. NIR reflectance and total reflectance were not associated with climate, but larger beetles had higher NIR reflectance. For UV–Vis reflectance, small beetles were darker in warmer and more humid environments, whereas there was no association with climate for large beetles.Main conclusionsOur study suggests that variation in reflectance of jewel beetles is not driven by thermal requirements and highlights the importance of considering NIR reflectance when evaluating explanations of the effects of colour on thermoregulation.

Funder

Australian Research Council

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3