Machine learning models automate classification of penicillin adverse drug reaction labels

Author:

Inglis Joshua M.123ORCID,Bacchi Stephen12,Troelnikov Alexander245,Smith William24,Shakib Sepehr16

Affiliation:

1. Department of Clinical Pharmacology Royal Adelaide Hospital Adelaide South Australia Australia

2. Adelaide Medical School, Faculty of Health and Medical Sciences University of Adelaide Adelaide South Australia Australia

3. Department of Clinical Pharmacology Flinders University and Flinders Medical Centre Adelaide South Australia Australia

4. Clinical Immunology & Allergy Royal Adelaide Hospital Adelaide South Australia Australia

5. Flinders University Adelaide South Australia Australia

6. Discipline of Pharmacology School of Medicine, University of Adelaide Adelaide South Australia Australia

Abstract

AbstractThere is a growing interest in the appropriate evaluation of penicillin adverse drug reaction (ADR) labels. We have developed machine learning models for classifying penicillin ADR labels using free‐text reaction descriptions, and here report external and practical validation. The models performed comparably with expert criteria for the categorisation of allergy or intolerance and identification of high‐risk allergies. These models have practical applications in detecting individuals suitable for penicillin ADR evaluation. Implementation studies are required.

Publisher

Wiley

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3