DNA methylation and transcriptome analysis reveal epigenomic differences among three macaque species

Author:

Wang Jiao1,Liu Xuyuan1ORCID,Lan Yue2,Que Tengcheng34,Li Jing1,Yue Bisong2,Fan Zhenxin12ORCID

Affiliation:

1. Key Laboratory of Bioresources and Eco‐Environment (Ministry of Education), College of Life Sciences Sichuan University Sichuan Chengdu China

2. Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences Sichuan University Sichuan Chengdu China

3. Terrestrial Wildlife Rescue and Epidemic Diseases Surveillance Center of Guangxi Guangxi Nanning China

4. Faculty of Data Science City University of Macau Macau Taipa China

Abstract

AbstractMacaques (genus Macaca) are the most widely distributed non‐human primates, and their evolutionary history, gene expression profiles, and genetic differences have been extensively studied. However, the DNA methylomes of macaque species are not available in public databases, which hampers understanding of epigenetic differences among macaque species. Epigenetic modifications can potentially affect development, physiology, behavior, and evolution. Here, we investigated the methylation patterns of the Tibetan macaque (M. thibetana; TM), Chinese rhesus macaque (M. mulatta lasiota; CR), and crab‐eating macaque (M. fascicularis; CE) through whole‐genome bisulfite sequencing from peripheral blood. We compared genome‐wide methylation site information for the three species. We identified 12,128 (CR vs. CE), 59,165 (CR vs. TM), and 39,751 (CE vs. TM) differentially methylated regions (DMRs) in the three macaques. Furthermore, we obtained the differentially expressed genes (DEGs) among the three macaque species. The differences between CR and CE were smaller at both the methylome and transcriptome levels than compared with TM (CR vs. TM and CE vs. TM). We also found a change in the density of single nucleotide mutations in DMRs relative to their flanking regions, indicating a potential mechanism through which genomic alterations may modulate methylation landscapes, thereby influencing the transcriptome. Functional enrichment analyses showed the DMR‐related genes were enriched in developmental processes and neurological functions, such as the growth hormone‐related pathway, insulin secretion pathway, thyroid hormone synthesis pathway, morphine addiction, and GABAergic synapses. These differences may be associated with variations in physiology and habitat among the macaques. Our study provides one of the first genome‐wide comparisons of genetic, gene expression, and epigenetic variations across different macaques. Our results should facilitate further research on comparative genomic and genetic differences in macaque species.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Agricultural and Biological Sciences,Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3