Affiliation:
1. Department of Statistics, North Carolina State University , Raleigh, North Carolina , USA
2. Department of Biological Sciences, North Carolina State University , Raleigh, North Carolina , USA
Abstract
Abstract
Biological sex and gender are critical variables in biomedical research, but are complicated by the presence of sex-specific natural hormone cycles, such as the estrous cycle in female rodents, typically divided into phases. A common feature of these cycles are fluctuating hormone levels that induce sex differences in many behaviors controlled by the electrophysiology of neurons, such as neuronal membrane potential in response to electrical stimulus, typically summarized using a priori defined metrics. In this paper, we propose a method to test for differences in the electrophysiological properties across estrous cycle phase without first defining a metric of interest. We do this by modeling membrane potential data in the frequency domain as realizations of a bivariate process, also depending on the electrical stimulus, by adopting existing methods for longitudinal functional data. We are then able to extract the main features of the bivariate signals through a set of basis function coefficients. We use these coefficients for testing, adapting methods for multivariate data to account for an induced hierarchical structure that is a product of the experimental design. We illustrate the performance of the proposed approach in simulations and then apply the method to experimental data.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献