Group Variable Selection for the Cox Model with Interval-Censored Failure Time Data

Author:

Wu Yuxiang1,Zhao Hui2ORCID,Sun Jianguo1ORCID

Affiliation:

1. Department of Statistics, University of Missouri , Columbia, Missouri , USA

2. School of Statistics and Mathematics, Zhongnan University of Economics and Law , Wuhan , China

Abstract

Abstract Group variable selection is often required in many areas, and for this many methods have been developed under various situations. Unlike the individual variable selection, the group variable selection can select the variables in groups, and it is more efficient to identify both important and unimportant variables or factors by taking into account the existing group structure. In this paper, we consider the situation where one only observes interval-censored failure time data arising from the Cox model, for which there does not seem to exist an established method. More specifically, a penalized sieve maximum likelihood variable selection and estimation procedure is proposed and the oracle property of the proposed method is established. Also, an extensive simulation study is performed and suggests that the proposed approach works well in practical situations. An application of the method to a set of real data is provided.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Reference21 articles.

1. Broken adaptive ridge regression and its asymptotic properties;Dai;Journal of Multivariate Analysis,2018

2. Variable selection and estimation with the seamless-L 0 penalty;Dicker;The Annals of Statistics,2013

3. Variable selection via nonconcave penalized likelihood and its oracle property;Fan;Journal of the American Statistical Association,2001

4. A proportional hazards model for interval-censored failure time data;Finkelstein;Biometrics,1986

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3