Prior and Posterior Checking of Implicit Causal Assumptions

Author:

Linero Antonio R.1ORCID

Affiliation:

1. Department of Statistics and Data Science, University of Texas at Austin , Austin, Texas , USA

Abstract

Abstract Causal inference practitioners have increasingly adopted machine learning techniques with the aim of producing principled uncertainty quantification for causal effects while minimizing the risk of model misspecification. Bayesian nonparametric approaches have attracted attention as well, both for their flexibility and their promise of providing natural uncertainty quantification. Priors on high-dimensional or nonparametric spaces, however, can often unintentionally encode prior information that is at odds with substantive knowledge in causal inference—specifically, the regularization required for high-dimensional Bayesian models to work can indirectly imply that the magnitude of the confounding is negligible. In this paper, we explain this problem and provide tools for (i) verifying that the prior distribution does not encode an inductive bias away from confounded models and (ii) verifying that the posterior distribution contains sufficient information to overcome this issue if it exists. We provide a proof-of-concept on simulated data from a high-dimensional probit-ridge regression model, and illustrate on a Bayesian nonparametric decision tree ensemble applied to a large medical expenditure survey.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Reference52 articles.

1. Machine learning and causal inference for policy evaluation;Athey,2015

2. Machine learning methods for estimating heterogeneous causal effects;Athey;Stat,2015

3. Doubly robust estimation in missing data and causal inference models;Bang;Biometrics,2005

4. Inference on treatment effects after selection among high-dimensional controls;Belloni;The Review of Economic Studies,2014

5. Debiased machine learning of global and local parameters using regularized Riesz representers;Chernozhukov;The Econometrics Journal,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3