Affiliation:
1. Department of Population Health Sciences, Georgia State University , Atlanta, Georgia , USA
Abstract
Abstract
We consider general nonlinear function-on-scalar (FOS) regression models, where the functional response depends on multiple scalar predictors in a general unknown nonlinear form. Existing methods either assume specific model forms (e.g., additive models) or directly estimate the nonlinear function in a space with dimension equal to the number of scalar predictors, which can only be applied to models with a few scalar predictors. To overcome these shortcomings, motivated by the classic universal approximation theorem used in neural networks, we develop a functional universal approximation theorem which can be used to approximate general nonlinear FOS maps and can be easily adopted into the framework of functional data analysis. With this theorem and utilizing smoothness regularity, we develop a novel method to fit the general nonlinear FOS regression model and make predictions. Our new method does not make any specific assumption on the model forms, and it avoids the direct estimation of nonlinear functions in a space with dimension equal to the number of scalar predictors. By estimating a sequence of bivariate functions, our method can be applied to models with a relatively large number of scalar predictors. The good performance of the proposed method is demonstrated by empirical studies on various simulated and real datasets.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献