Nonlinear Function-on-Scalar Regression via Functional Universal Approximation

Author:

Luo Ruiyan1ORCID,Qi Xin1ORCID

Affiliation:

1. Department of Population Health Sciences, Georgia State University , Atlanta, Georgia , USA

Abstract

Abstract We consider general nonlinear function-on-scalar (FOS) regression models, where the functional response depends on multiple scalar predictors in a general unknown nonlinear form. Existing methods either assume specific model forms (e.g., additive models) or directly estimate the nonlinear function in a space with dimension equal to the number of scalar predictors, which can only be applied to models with a few scalar predictors. To overcome these shortcomings, motivated by the classic universal approximation theorem used in neural networks, we develop a functional universal approximation theorem which can be used to approximate general nonlinear FOS maps and can be easily adopted into the framework of functional data analysis. With this theorem and utilizing smoothness regularity, we develop a novel method to fit the general nonlinear FOS regression model and make predictions. Our new method does not make any specific assumption on the model forms, and it avoids the direct estimation of nonlinear functions in a space with dimension equal to the number of scalar predictors. By estimating a sequence of bivariate functions, our method can be applied to models with a relatively large number of scalar predictors. The good performance of the proposed method is demonstrated by empirical studies on various simulated and real datasets.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Reference28 articles.

1. An Introduction to Neural Networks

2. An empirical Bayes approach to growth curve analysis;Barry;Journal of the Royal Statistical Society: Series D (The Statistician),1996

3. A Bayesian approach to functional-based multilevel modeling of longitudinal data: applications to environmental epidemiology;Berhane;Biostatistics,2008

4. Smoothing spline models for the analysis of nested and crossed samples of curves;Brumback;Journal of the American Statistical Association,1998

5. A penalized spline approach to functional mixed effects model analysis;Chen;Biometrics,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3