A Semi‐Procedural Convolutional Material Prior

Author:

Zhou Xilong12ORCID,Hašan Miloš2,Deschaintre Valentin2,Guerrero Paul2,Sunkavalli Kalyan2,Kalantari Nima Khademi1

Affiliation:

1. Texas A&M University College Station TX USA

2. Adobe Research San Jose CA USA

Abstract

AbstractLightweight material capture methods require a material prior, defining the subspace of plausible textures within the large space of unconstrained texel grids. Previous work has either used deep neural networks (trained on large synthetic material datasets) or procedural node graphs (constructed by expert artists) as such priors. In this paper, we propose a semi‐procedural differentiable material prior that represents materials as a set of (typically procedural) grayscale noises and patterns that are processed by a sequence of lightweight learnable convolutional filter operations. We demonstrate that the restricted structure of this architecture acts as an inductive bias on the space of material appearances, allowing us to optimize the weights of the convolutions per‐material, with no need for pre‐training on a large dataset. Combined with a differentiable rendering step and a perceptual loss, we enable single‐image tileable material capture comparable with state of the art. Our approach does not target the pixel‐perfect recovery of the material, but rather uses noises and patterns as input to match the target appearance. To achieve this, it does not require complex procedural graphs, and has a much lower complexity, computational cost and storage cost. We also enable control over the results, through changing the provided patterns and using guide maps to push the material properties towards a user‐driven objective.

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3