Forecasting Korean Stock Returns with Machine Learning

Author:

Noh Hohsuk1,Jang Hyuna1,Yang Cheol‐Won2ORCID

Affiliation:

1. Department of Statistics Sookmyung Women's Univerisity Seoul Republic of Korea

2. School of Business Administration Dankook Univerisity Yongin Republic of Korea

Abstract

AbstractThis paper aims to evaluate the predictive power of financial variables by using various machine learning methods. An analysis is conducted on data for the Korean stock market, which is representative of emerging markets, over 32 years from 1987 to 2018. The study shows that median regression is  a more efficient tool than mean regression in the presence of potential heterogeneity of stocks, significantly improving performance in terms of average realized monthly return. This suggests that median regression can have better predictive performance in emerging markets where there are likely to be outliers. Additionally, a gradient boosting machine (GBM) is found to be better than a traditional linear model both in prediction accuracy and portfolio performance. The hedged return from GBM is on average 2.89% per month with an annualized Sharpe ratio of 0.93 in the median regression. The neural network (NN) is also tested and shown to perform best when the number of hidden layers is two or three. Finally, we evaluatea list of predictor variables with various measures of variable importance. Variables of risk, price trend and liquidity are found to serve as important predictors.

Publisher

Wiley

Subject

Finance

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3