Understanding Corporate Bond Defaults in Korea Using Machine Learning Models*

Author:

Park Dojoon1ORCID,Auh Jun Kyung1ORCID,Song Giwan1ORCID,Eom Young Ho1ORCID

Affiliation:

1. School of Business Yonsei University Republic of Korea

Abstract

AbstractWe investigate corporate bond defaults from 1995 to 2020 using hand‐collected data from hard‐copy publications in Korea. Using an under‐sampling method, we construct default prediction models based on machine learning models as well as a logistic model. The empirical results show that the random forest model outperforms the others. However, regardless of the models used, model performance in financial crisis periods is significantly worse than it is in non‐crisis periods. This finding suggests the need for additional information to improve model performance during crises when the default prediction is the most relevant. Furthermore, the dominant predictor of defaults before the global financial crisis was the debt ratio, while subsequently, the coverage ratio has become the most important predictor.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3