Alterations in epidermal stem cells within the pilosebaceous unit in atrophic acne scars

Author:

Kim Dong Hyo12ORCID,Yoon Ji Young2,Lee Jun Hyo12ORCID,Suh Dae Hun12

Affiliation:

1. Department of Dermatology Seoul National University College of Medicine Jongno‐gu, Seoul Korea

2. Acne, Rosacea, Seborrheic Dermatitis and Hidradenitis Suppurativa Research Laboratory Seoul National University Hospital Jongno‐gu, Seoul Korea

Abstract

AbstractBackgroundAtrophic acne scarring is a common sequela of inflammatory acne, causing significant problems for affected patients. Although prolonged inflammation and subsequent aberrant tissue regeneration are considered the underlying pathogenesis, the role of epidermal stem cells, which are crucial to the regeneration of pilosebaceous units, remains unknown.ObjectivesTo examine the changes occurring in epidermal stem cells in atrophic acne scars.MethodsChanges in collagen, elastic fibre and human leukocyte antigen (HLA)‐DR expression were analysed in normal skin and inflammatory acne lesions at days 1, 3 and 7 after development. The expression of epidermal stem cell markers and proliferation markers was compared between normal skin and mature atrophic acne scar tissue.ResultsIn acne lesions, inflammation had invaded into pilosebaceous units over time. Their normal structure had been destructed and replaced with a reduced amount of collagen and elastic fibre. Expression of stem cell markers including CD34, p63, leucine‐rich repeat‐containing G protein‐coupled receptor (LGR)6 and LGR5, which are expressed in the interfollicular epidermis, isthmus and bulge of hair follicles, significantly decreased in atrophic acne scar tissue compared to normal skin. Epidermal proliferation was significantly reduced in scar tissue.ConclusionsThese findings suggest that as inflammatory acne lesions progress, inflammation gradually infiltrates the pilosebaceous unit and affects the resident stem cells. This disruption impedes the normal regeneration of the interfollicular epidermis and adnexal structures, resulting in atrophic acne scars.

Funder

National Research Foundation of Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3