Development of a rapid and reliable surveillance method for Ornithodoros turicata americanus in gopher tortoise (Gopherus polyphemus) burrows in the southeastern United States

Author:

Canino Nicholas1,Torhorst Carson1,Botero‐Cañola Sebastian1,Beati Lorenza2,O'Hara Kathleen C.3,James Angela3,Wisely Samantha M.1ORCID

Affiliation:

1. Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA

2. US National Tick Collection, Institute for Coastal Plain Science, Georgia Southern University Statesboro Georgia USA

3. Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, USDA Fort Collins Colorado USA

Abstract

AbstractThe soft tick Ornithodoros turicata Duges (Acari: Argasidae) is a potential vector of African swine fever virus (ASFV). We evaluated the efficacy of two methods to collect soft ticks rapidly and efficiently from gopher tortoise (Gopherus polyphemus) burrows, which are ubiquitous throughout large regions of the southeastern United States and their burrows are a known microhabitat of O. turicata. Burrow vacuuming was an effective and efficient tick collection method; no tick was captured employing CO2 trapping. Using an occupancy modelling framework, we estimated that the probability of detecting ticks from an infested burrow each time a sample was taken with this method was 58% and increased with the average relative humidity. With the occupancy model, we estimated that 70% of the burrows in the study area were infested with O. turicata. Manual sifting of the burrow material yielded more ticks (6.6 individuals/sample) than using a set of three sieves (2.9 individuals/sample), yet the probability of detecting the species was not different between the two methods (Pval = 0.7). These methods can inform the development of ASF vector surveillance and outbreak response plans in areas of high risk for ASFV introduction in the region.

Funder

U.S. Department of Agriculture

Animal and Plant Health Inspection Service

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3